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Abstract. We work with φ4 theory and study the 4PI effective action at 3-loop order. We discuss the
relation between the equations of motion obtained by taking functional derivatives of the effective action
with respect to the variational parameters, and the Schwinger–Dyson (SD) equations. We show that the
equation obtained by differentiating with respect to the connected 2-point function is identical to the SD
equation for the truncated 2-point function; differentiating with respect to the connected 3-point function
reproduces the SD equation for the truncated 3-point function, up to 1-loop order; and differentiating with
respect to the connected 4-point function reproduces the SD equation for the truncated 4-point function, at
the tree level. These results establish a connection between two techniques for performing non-equilibrium
calculations, and provide a starting place for a study of the gauge dependence of quantities derived from
an nPI effective action.

1 Introduction

The study of particles in a hot and dense medium is of
current interest in the study of plasma physics, condensed
matter physics, nuclear physics, and particle physics. Per-
turbative calculations of observables in hot dense media
are often plagued with infrared divergences and other prob-
lems. These problems are connected to the fact that calcu-
lations in terms of the bare quantities of the underlying field
theory fail to accurately describe the collective behaviour of
the hot dense medium, which leads to inconsistencies. One
attempts to remedy this situation by working with dressed
quantities which take into account the most important col-
lective effects. An arbitrary resummation procedure how-
ever, will produce dressed quantities that violate the con-
servation laws of the original theory. To avoid this problem,
one starts with an action functional that respects the orig-
inal symmetries. Dressed quantities are obtained from the
effective action using a variational procedure which guar-
entees thermodynamic consistency. Early contributions in
this field were made by several authors (see for exam-
ple [1–4]). The formalism was generalized to relativistic
field theories by Cornwall, Jackiw and Tomboulis [5].

The simplest choice of such an effective action is the 2PI
effective action. The full 2PI effective action is completely
gauge invariant. In order to do practical calculations how-
ever, one must truncate the effective action at some order
in an expansion parameter. This truncated 2PI effective
action is also gauge invariant, to the same order in the ex-
pansion parameter [6,7], but quantities which are obtained
from functional differentiation of a truncated 2PI effective
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action are not generally gauge invariant. This problem has
been discussed by many authors (see for example [8,9]). The
source of the problem can be understood diagramatically
as follows. The 2PI effective theory results in a perturba-
tion theory that uses full resummed propagators and bare
vertices. Equivalently, at each order of the perturbation
theory, the truncated theory resums certain topologies in
preference to others. Since gauge invariance results from the
cancellation of gauge dependent terms that occur within
different topologies, it is not surprising that the procedure
described above produces gauge dependent results.

Effective theories that involve dressed vertices, aswell as
dressed propagators, have been studied previously [10,11].
An nPI effective theory produces a perturbation theory
that involves mean fields and dressed 2-point, 3-point . . .
n-point functions. A perturbative expansion of this form
simultanously resums different classes of topologies. As a
result, one expects that the problems associated with the
gauge dependence of physical quantities obtained from the
truncated theorywill be reduced: at a given order in the per-
turbative expansion, gauge dependent contributions should
be smaller in a higher order (larger n) effective theory.

Problems involving the physics of collective phenomena
are also studied within a Green’s function formalism, in
which dressed propagators and vertices follow from a cou-
pled set of Schwinger–Dyson (SD) equations. As is the case
with effective actions, the full hierarchy of SD equations is
gauge invariant, but practical calculations involve trunca-
tion, and the truncated equations are not gauge invariant.

It is of interest to understand the connection between
these two formalisms. In this paper we take a step in this
direction by looking at the equations of motion that are ob-
tained from the 4PI effective action for φ4 theory. We work
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to 3-loop order and discuss the relationship between the
equations of motion obtained by taking functional deriva-
tives of the effective action with respect to the variational
parameters and the SD equations. We show that the equa-
tion obtained by differentiation with respect to the con-
nected 2-point function is identical to the SD equation
for the truncated 2-point function. Taking the functional
derivative with respect to the connected 3-point function
reproduces the SD equation for the truncated 3-point func-
tion, up to 1-loop order. The functional derivative with
respect to the connected 4-point function reproduces the
SD equation for the truncated 4-point function, at the tree
level.These results establish a connectionbetween two tech-
niques for performing non-equilibrium calculations, and
provide a starting place for a study of the gauge depen-
dence of quantities derived from an nPI effective action.

This paper is organized as follows. In Sect. 2 we review
the 2PI effective action. We show explicitly that 1PR dia-
grams cancel at 2-loop order, and that 2PR diagrams cancel
at 3-loop order. Of course, these results are well known and
are presented only to illustrate the method that we will use
in the next section. In Sect. 3 we study the 4PI effective
theory. We work at 3-loop order and obtain an expression
for the 4PI effective action as a functional of four varia-
tional parameters: the mean field ϕ, the connected 2-point
function G, the connected 3-point function V , and the con-
nected 4-point function U . We take functional derivatives of
this expression with respect to the variational parameters
and discuss the connection between these results and the
SD equations. Some conclusions are presented in Sect. 4.

2 The 2PI effective action

The generating functional for connected Green functions
is given by

W [J, B] (1)

= −i� ln
∫

Dφ Exp
[

i
�

(
S(φ) + Jxφx +

1
2

φxφxBxy

)]
.

Throughout this paper we use DeWitt notation in which
it is understood that repeated continuous indices are inte-
grated over:

Jxφx :=
∫

d4x J [x] φ[x].

We expand around the minimum of the exponent which is
obtained from the equation

δS(φ)
δφx

+ Jx +
1
2

Bxyφy

∣∣∣
φ=ϕc

= 0. (2)

We define

G0
xy =

(
S(2)

c + B
)−1

xy
, (3)

and use the notation

S(n)
c =

δnS

δφn

∣∣∣
φc

. (4)

We calculate perturbatively by shifting the integration vari-
able in (1),

φ = ϕc +
√

�χ, (5)

and expanding around the classical trajectory.

2.1 2-loop order

At two loops we obtain the familiar result

W (2)[J, B] = W0[J, B] + W1[J, B] + W2[J, B],

W0[J, B] = S[ϕc] + Jxϕc
x +

1
2

ϕc
xϕc

yBxy,

W1[J, B] = i
�

2
Tr ln

(
G−1

0

)
,

W2[J, B] = �
2


− 1

8��
��
��
��

+
1
12��
��

+
1
8��
��
��
��




G0,S
(3)
c ,S

(4)
c

, (6)

where the subscript on the square bracket indicates that the
lines and vertices in the diagrams represent the propagator
G0 and the vertices S

(3)
c and S

(4)
c .

We want to perform the Legendre transform to obtain
the effective action Γ [ϕ, G] where the variables ϕ and G
are defined below. Taking functional derivatives of (1) with
respect to J and B we obtain,

δW

δJx
= 〈φx〉 =: ϕx, (7)

δ2W

δJxδJy
=

i
�

(〈φxφy〉 − ϕxϕy) ,

δW

δBxy
=

1
2

〈φxφy〉.

The mean field is defined by the first line in (7). To define
the 2-point function we start from the definition of the nth
Green function:

G(n)(x1, x2, . . . xn)

=
(

− i
�

)n−1

〈φ(x1)φ(x2) . . . φ(xn)〉. (8)

Subtracting disconnected pieces to obtain the connected
2-point function we have

�G(2)(x1, x2) = −i (〈φ(x1)φ(x2)〉 − ϕ(x1)ϕ(x2)) , (9)

and using (7) gives

i�G(2)
xy = −i�

δW

δJxδJy
= 2

δW

δBxy
− ϕxϕy. (10)



M.E. Carrington: The 4PI effective action for φ4 theory 385

From now on we drop the superscript (2) on the 2-point
function. The Legendre transform has the form

Γ [ϕ, G] = W [J, B] − Jxϕx − 1
2

Bxy (i�Gxy + ϕxϕy) . (11)

This expression is constructed so that the partial functional
derivatives with respect to J and B are zero. We obtain

δΓ

δϕx
= −Jx − Bxyϕy, (12)

δΓ

δGxy
= − i�

2
Bxy,

We note that W [J, B] is an explicit function of ϕc and
G0 and only dependent on the sources J and B because
of the fact that ϕc and G0 depend on J and B, as given
in (2) and (3). We want to remove the dependence on the
variables ϕc and G0 and obtain a function that depends
only on ϕ and G. The procedure is as follows.
[1] Calculate a series expansion of the variables ϕ and
G as functions of ϕc and G0 by using (7) and (10) and
taking functional derivatives of the perturbative expansion
of W [J, B] (see (6)). We obtain series of the form

ϕ = ϕ(0)[ϕc, G0] + ϕ(1)[ϕc, G0] + ϕ(2)[ϕc, G0] + . . .

(13)

G = G(0)[ϕc, G0] + G(1)[ϕc, G0] + G(2)[ϕc, G0] + . . .

To lowest order

ϕ(0) = ϕc ; G(0) = G0. (14)

The first order corrections are

ϕ(1)[ϕc, G0] = − i�
2

[
�

��
��]

G0,S
(3)
c ,S

(4)
c

(15)

G(1)[ϕc, G0] = − i�
2



� ���
��

− 1
2
� �

��
��

− 1
2
� �

��
��


G0,S

(3)
c ,S

(4)
c

, (16)

where the arrow on the end of a line indicates explicitly
that the line is not truncated.
[2] Invert (13) by expanding iteratively in powers of � to
obtain expressions of the form

ϕc = ϕ(0)
c [ϕ, G] + ϕ(1)

c [ϕ, G] + ϕ(2)
c [ϕ, G] + . . .

(17)

G0 = G
(0)
0 [ϕ, G]) + G

(1)
0 [ϕ, G] + G

(2)
0 [ϕ, G] + . . .

Substituting (14) and (15) into (13) and keeping terms of
order � gives

ϕc = ϕ − ϕ(1)[ϕ, G] + O(�2), (18)

G0 = G − G(1)[ϕ, G] + O(�2) (19)

and

(G0)−1
xy = G−1

xy − G−1
xz G(1)[ϕ, G]zw G−1

wy + O(�2).

(20)

Below we show explicitly that all 1PR diagrams cancel
at 2-loop order. Of course, this result is well known. Our
intention is only to illustrate the method. We substitute (6)
into (11) to obtain

Γ (2)[ϕ, G] = S[ϕc]︸ ︷︷ ︸
α

+ Jxϕc
x︸ ︷︷ ︸

β

+
1
2

ϕc
xϕc

yBxy︸ ︷︷ ︸
β

−Jxϕx︸ ︷︷ ︸
β

(21)

− 1
2

Bxy

(
i�Gxy︸ ︷︷ ︸

γ

+ ϕxϕy︸ ︷︷ ︸
β

)
+ i

�

2
Tr ln

(
G−1

0

)︸ ︷︷ ︸
γ

+�
2


− 1

8��
��
��
��

+
1
12��
��

+
1
8��
��

��
��




G0; S
(3)
c ; S

(4)
c

.

Note that since we are working to 2-loop order in
this section, we can make the replacements G0 → G;
S

(3)
c → S(3) and S

(4)
c → S(4) inside of all terms in the

square brackets.
We group the terms as indicated, and consider each set

separately.
[α] The term marked α can be expanded:

(α) = S[ϕc] = S[ϕ + (ϕc − ϕ)]

= S[ϕ] + (ϕc − ϕ)x
δS

δϕx

+
1
2

(ϕc − ϕ)x(ϕc − ϕ)y
δ2S

δϕxδϕy
. (22)

[β] The terms marked β give

(β) = (Jx + Bxyϕc
y)(ϕc − ϕ)x

− 1
2

Bxy(ϕc − ϕ)x(ϕc − ϕ)y (23)

= − δS

δϕc
x

(ϕc − ϕ)x − 1
2

Bxy(ϕc − ϕ)x(ϕc − ϕ)y

= −
(

δS

δϕx
+ (ϕc − ϕ)y

δ2S

δϕx δϕy

)
(ϕc − ϕ)x

− 1
2

Bxy(ϕc − ϕ)x(ϕc − ϕ)y,

where we have used (2) to go from the first to the second
line and made the expansion

δS

δϕc
x

=
δS

δϕx
+ (ϕc − ϕ)y

δS

δϕx δϕy
(24)
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in going from the second to the third line. The second term
in (22) and the first term in (23) cancel exactly. Note that
it is because of this cancellation that we do not need the
term O(�2) which is dropped in (18).
[γ] We use (3) to eliminate the source B. The factors G−1

0

are expanded using (20) and S
(2)
c is expanded as above.

We obtain

(γ) = i
�

2
Tr lnG−1

−i
�

2
Gxy (25)

×
(

G−1
xy −

[
δ2S

δϕx δϕy
+ (ϕc − ϕ)z

δ3S

δϕx δϕyδϕz

])
.

Contributions to 1PR diagrams come from the last term
in (22), the last two terms in (23), and the last term in (25).
Combining we have

− 1
2

(ϕc − ϕ)x︸ ︷︷ ︸
−ϕ(1)[ϕ,G]

(ϕc − ϕ)y︸ ︷︷ ︸
−ϕ(1)[ϕ,G]


 δ2S

δϕx δϕy
+ Bxy︸ ︷︷ ︸

G




+ i
�

2
Gxy (ϕc − ϕ)z︸ ︷︷ ︸

−ϕ(1)[ϕ,G]

δ3S

δϕx δϕy δϕz
, (26)

where the substitutions indicated by the underbraces are
valid up to corrections of order �

3 (using (3), (14), (15),
and (18)). Using (15) it is easy to see that both terms
correspond to the dumbbell graph. The first one carries a
factor of �

2/8 and the second one a factor of −�
2/4. Since

the symmetry factor for the dumbbell graph in (21) is 1/8,
we find that, after summing all contributions, the dumbbell
graphs cancel. This is merely the well known statement that
the 2PI effective action is one-particle-irreducible. Since
there are no 2PR diagrams at 2-loop order we have to go
to next order in the loop expansion (order �

3) in order to
see cancellations of 2PR graphs. This is the subject of the
next section.

2.2 3-loop order

In this section we will calculate the 2PI effective action to
3-loop order and explicitly demonstrate the cancellation of
the 2PR diagrams. Of course, it is well known that both
the 1PR and 2PR diagrams cancel in the 2PI effective
action [5]. We remind the reader that our purpose is to
demonstrate the technique that will be used in the next
section to study the 4PI effective action. Throughout this
section we will ignore all 1PR diagrams. Equivalently, we
assume that we are allowed to make the substitution ϕc →
ϕ everywhere. Our goal is to demonstrate the cancellation
of the 2PR diagrams, without bothering about the 1PR
diagrams which can be shown to cancel using the same
method as in the previous section.

In order to simplify the equations, we introduce some
shorthand notation. We define

δ2S

δϕxδϕy
= S(2)

xy ;
δ3S

δϕxδϕyδϕz
= S(3)

xyz ; etc. (27)

In addition, whenever possible to do so without causing
confusion, we will use a type of matrix notation. We give
some examples below:

Jxϕx → Jϕ, (28)

(ϕc − ϕ)x(ϕc − ϕ)yBxy → (ϕc − ϕ)2B.

Note that in principle an expression like (ϕc − ϕ)2B is
ambiguous since it could mean either

(ϕc − ϕ)x(ϕc − ϕ)yBxy or (ϕc − ϕ)x(ϕc − ϕ)xByy. (29)

Since we are only dealing with connected diagrams it is
clear that the first expression is to be used. The only place
where this shorthand notation can cause confusion is when
a given combination of factors could correspond to either
of two diagrams with different topologies. In these cases,
we will write the indices explicitly.
In order to obtain an expression for Γ (3)[ϕ, G] we use (11)
and expand W [J, B] to 3-loop order: W [J, B] = W0[J, B]+
W1[J, B]+W2[J, B]+W3[J, B]. We group terms as in (21)
and use expressions of the form (17) to remove the depen-
dence on the variables ϕc and G0 and obtain a function
that depends only on ϕ and G.
There are three different places where 3-loop graphs will
appear.
[1] Contributions from W3[J, B].
[2] When working at order �

3 it is not sufficient to replace
G0 with G in the contributions from W2[J, B], as in the
previous section. Instead we must use (19) and write G0 =
G − G(1)[ϕ, G] + O(�2). Note that in principle the vertices
should also be expandedbywritingS

(n)
c = S(n)[ϕ+(ϕc−ϕ)]

and Taylor expanding as in (24). However, since we are
ignoring 1PR diagrams, we make the replacement S

(n)
c →

S(n).
[3] In the terms marked (γ), we use (3) to remove the source
B, make the replacement ϕc → ϕ, and expand G0 to second
order. As will be seen below, this expansion involves terms
of the form (G(1))2 but terms proportional to G(2) cancel,
and thus we will not need anything more than G(1) as given
in (16) and (19).

We calculate below each of these three contributions.
[1] The contribution from W3[J, B] (neglecting 1PR
graphs) is

W3[J, B] = i�3


 1

16��
��
��
��
��
��

− 1
8��
��
��
��

+
1
16��
��

(30)
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+
1
24��
��

− 1
8��
��
����

+
1
48��
��
��
��


G0; S

(3)
c ; S

(4)
c

.

Note that the first three diagrams are 2PR and the
second three are 2PI. Since we are working to 3-loop order
in this section, we can make the replacements G0 → G;
S

(3)
c → S(3) and S

(4)
c → S(4) inside of all terms in the

square brackets.
[2] Consider the graphs that we obtain by substituting (16)
and (19) into W2[J, B] (ignoring 1PR terms). The result
can be represented graphically:

i
�

3

8


2��
��
��
��

−��
��

(31)

−��
��
��
��
��
��




G; S(3); S(4)

.

[3] Finally, we consider the expansion of the terms marked
(γ) in (21). We use (3) to eliminate the source B and make
the replacement ϕc → ϕ since doing so means dropping
1PR graphs. We want to expand the propagator using an
expression like (20), but working to one higher power in �.

Eliminating B we have

(γ) =
i�
2

(
GS(2) +

[
Tr lnG−1

0 − GG−1
0

])
. (32)

Expanding the term in square brackets gives

[ ] → Tr lnG−1 − GxyG−1
yx − 1

2

(
G(1)

xy G−1
yz G(1)

zw G−1
wx

)
,(33)

where we have used

(G0)−1
xy = G−1

xy − G−1
xz G(1)

zw G−1
wy − G−1

xz G(2)
zw G−1

wy . (34)

Note that the terms containing the factor G(2) cancel ex-
actly. Substituting we obtain

(γ) = i
�

2

(
G
[
S(2) − G−1

]
+ Tr lnG−1

− 1
2

(
G(1)

xy G−1
yz G(1)

zw G−1
wx

))
. (35)

Consider the last term in this expression. This term is
already explicitly of order �

3 and therefore we can make
the replacements ϕc → ϕ and G0 → G in the arguments
of G(1). Using the 1PI part of (16) we obtain a result that

can be represented graphically:

i
�

3

16


 − 2��
��
��
��

+��
��

(36)

+��
��
��
��
��
��




G; S(3); S(4)

.

Combining (30), (31) and (36) we see that the 2PR terms
cancel. We are left with

Γ (3)[ϕ, G] = S[ϕ] + i
�

2

(
G
[
S(2) − G−1

]
+ Tr lnG−1

)

+�
2


− 1

8��
��
��
��

+
1
12��
��


G,S(3),S(4)

+i�3


 1

24��
��

− 1
8��
��
����

+
1
48��
��
��
��


G; S(3); S(4)

.(37)

3 4PI effective theory

3.1 Generating functional

The generating functional for connected diagrams is
given by

W [J, B, K, H]

= −i� ln
∫

Dφ Exp
[

i
�

(
S(φ) + Jxφx +

1
2

Bxyφxφy

+
1
3!

Kxyzφxφyφz +
1
4!

Hxyzwφxφyφzφw

)]
, (38)

where Kxyz and Hxyzw are sources. We expand around the
solutions to the classical equations of motion by shifting

φ = ϕc +
√

�χ, (39)

where φc is defined by the equation

δS

δφ

∣∣∣
ϕc

+ J + Bϕc +
1
2

Kϕ2
c +

1
3!

Hϕ3
c = 0. (40)
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In this section, many of the variables, like ϕc as defined
above, have counterparts for the 2PI effective action dis-
cussed in the previous section. To avoid a proliferation of
indices we will use the same variable, and not define a
new variable with an extra index (like ϕc

4PI). We assume
always that variables used in this section correspond to
the definitions made within this section (unless otherwise
indicated). Shifting around this classical solution it is easy
to show that the perturbative expansion of W [J, B, K, H]
involves a propagator and vertices given by

G−1
0 [ϕc] = S(2)

c + B + Kϕc +
1
2

Hϕ2
c , (41)

Ṽ0[ϕc] = S(3)
c + K + Hϕc,

Ũ0[ϕc] = S(4)
c + H,

where the tildes indicate truncated vertices.
Taking functional derivatives of W [J, B, K, H] we ob-

tain

ϕ := 〈φ〉 =
δW

δJ
, (42)

i�G := −i�
δ2W

δJ2 = 2
δW

δB
− ϕ2,

−�
2V := −�

2 δ3W

δJ3 = 3!
δW

δK
− 3i�Gϕ − ϕ3,

−i�3U := i�3 δ4W

δJ4

= 4!
δW

δH
+ 4�

2V ϕ + 3�
2G2 − 6i�Gϕ2 − ϕ4,

where ϕ, G, V , and U are the connected 1-point function,
2-point function, 3-point function and 4-point function,
respectively, and we have used (8).

3.2 The effective action

The effective action is obtained by Legendre transforming
the generating functional. The Legendre transformation is
constructed so that partial derivatives with respect to the
sources J , B, K and H are zero. We make the definition

Γ [ϕ, G, V, U ] (43)

= W [J, B, K, H]

−Jϕ − 1
2

B(i�G + ϕ2) − 1
3!

K(−�
2V + 3i�Gϕ + ϕ3)

− 1
4!

H(−i�3U − 4�
2V ϕ − 3�

2G2 + 6i�Gϕ2 + ϕ4).

Taking partial derivatives we obtain the equations of mo-
tion:

δΓ

δϕ
= −J − Bϕ − 1

2
Kϕ2 − 1

3!
Hϕ3, (44)

δΓ

δG = − i�
2

(
B + Kϕ + Hϕ2) +

�
2

3
HG,

δΓ

δV
=

�
2

3!
(K + Hϕ) ,

δΓ

δU
= i�3H.

As in the previous section, the goal is to obtain per-
turbative expansions for the variables {ϕc, G0, Ṽ0, Ũ0} in
terms of the variables {ϕ, G, V, U}. We proceed as before.
The first step is to derive expressions analogous to (13) by
taking functional derivatives of the perturbative expression
for W [J, B, K, H]. This procedure leads to expansions of
the form

ϕ = ϕ(0)
[
ϕc, G0, Ṽ0, Ũ0

]
+ ϕ(1)

[
ϕc, G0, Ṽ0, Ũ0

]
+ϕ(2)

[
ϕc, G0, Ṽ0, Ũ0

]
+ . . . , (45)

G = G(0)
[
ϕc, G0, Ṽ0, Ũ0

]
+ G(1)

[
ϕc, G0, Ṽ0, Ũ0

]
+G(2)

[
ϕc, G0, Ṽ0, Ũ0

]
+ . . . ,

V = V (0)
[
ϕc, G0, Ṽ0, Ũ0

]
+ V (1)

[
ϕc, G0, Ṽ0, Ũ0

]
+V (2)

[
ϕc, G0, Ṽ0, Ũ0

]
+ . . . ,

U = U (0)
[
ϕc, G0, Ṽ0, Ũ0

]
+ U (1)

[
ϕc, G0, Ṽ0, Ũ0

]
+U (2)

[
ϕc, G0, Ṽ0, Ũ0

]
+ . . .

The second step is to invert (45) by expanding iteratively
in powers of � and obtain the equations of the form

ϕc = ϕ(0)
c [ϕ, G, V, U ] + ϕ(1)

c [ϕ, G, V, U ]

+ϕ(2)
c [ϕ, G, V, U ] + . . . (46)

G0 = G
(0)
0 [ϕ, G, V, U ]) + G

(1)
0 [ϕ, G, V, U ]

+G
(2)
0 [ϕ, G, V, U ] + . . . ,

Ṽ0 = Ṽ
(0)
0 [ϕ, G, V, U ]) + Ṽ (1)[ϕ, G, V, U ]

+Ṽ (2)[ϕ, G, V, U ] + . . . ,

Ũ0 = Ũ
(0)
0 [ϕ, G, V, U ]) + Ũ

(1)
0 [ϕ, G, V, U ]

+Ũ
(2)
0 [ϕ, G, V, U ] + . . .

The cancellation of the 1PR and 2PR diagrams works
essentially the same as before. The interesting question is
what happens to the 3PR and 4PR diagrams. To study
this point, we will work at order �

3 and assume that all
1PR and 2PR diagrams cancel. Effectively, we make the
replacements ϕc → ϕ and G0 → G everywhere. The 4PI
effective action is given by (38) and (43). Dropping 1PR
and 2PR diagrams we obtain (to order �

3)

Γ (3)[ϕ, G, V, U ]

= S[ϕc]︸ ︷︷ ︸
α

+ Jϕc︸︷︷︸
β

+
1
2

ϕcϕcB︸ ︷︷ ︸
β

+
1
3!

Kϕ3
c︸︷︷︸

β

+
1
4!

Hϕ4
c︸︷︷︸

β
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+i
�

2
Tr ln

(
G−1

0

)︸ ︷︷ ︸
γ

+�
2


− 1

8��
��
��
��

+
1
12��
��


G0; S

(3)
c ; S

(4)
c

+i�3


 1

24��
��

− 1
8��
��
����

+
1
48��
��
��
��


G0; S

(3)
c ; S

(4)
c

− Jϕ︸︷︷︸
β

− 1
2

B
(
i�G︸︷︷︸

γ

+ ϕ2︸︷︷︸
β

) − 1
3!

K
(−�

2V︸ ︷︷ ︸
ε

+ 3i�Gϕ︸ ︷︷ ︸
γ

+ ϕ3︸︷︷︸
β

)

− 1
4!

H
(−i�3U︸ ︷︷ ︸

τ

− 4�
2V ϕ︸ ︷︷ ︸
ε

− 3�
2G2︸ ︷︷ ︸
τ

+ 6i�Gϕ2︸ ︷︷ ︸
γ

+ ϕ4︸︷︷︸
β

)
. (47)

We start by considering the terms marked (α), (β) and
(γ). Using (41) and making the replacements ϕc → ϕ and
G0 → G we have

(α) = S[ϕ], (48)

(β) = 0,

(γ) = i
�

2

(
Tr lnG−1 + G

[
S(2) − G−1

])
.

Combining these results gives

Γ [ϕ, G, V, U ]Part 1

= S[ϕ] + i
�

2

(
Tr lnG−1 + G

[
S(2) − G−1

])
. (49)

The interesting contributions come from the following.
[1] The 3-loop diagrams in (47).
[2] Terms obtained from the 2-loop diagrams in (47) with
the vertices expanded to order �.
[3] Contributions to the terms in (47) marked ε and τ with
the sources removed using (41) and the vertices expanded
to order �.

Using (41) to remove the sources we have

Γ [ϕ, G, V, U ]Part 2

=
�

2

3!
V
(

Ṽ0︸︷︷︸
b

− S(3)
c︸︷︷︸
e

)
(50)

+i
�

3

4!
U
(

Ũ0︸︷︷︸
c

− S(4)
c︸︷︷︸
e

)
+

�
2

8
G2( Ũ0︸︷︷︸

a

− S(4)
c︸︷︷︸
e

)

+�
2


− 1

8��
��
��
��

+
1
12��
��


G0,Ṽ0,Ũ0︸ ︷︷ ︸

a

︸ ︷︷ ︸
b

+i�3


 1

24��
��

− 1
8��
��
����︸ ︷︷ ︸

c
︸ ︷︷ ︸

c

+
1
48��
��
��
��


G0,Ṽ0,Ũ0

.

︸ ︷︷ ︸
c

Note that the terms marked (a) cancel (up to 2PR terms).
The terms marked (e) are already functions of G, V

and U .
We need to rewrite the remaining terms as functions of

{ϕ, G, V, U} instead of {ϕc, G0, Ṽ0, Ũ0}. We take functional
derivatives of the perturbative expansion of W [J, B, K, H]
and find equations of the form (45), which give expansions
of V and U in terms of {ϕc, G0, Ṽ0, Ũ0}. Recall that since
we are ignoring 1PR and 2PR terms we can make the
replacements ϕc → ϕ and G0 → G. We obtain

V =


− ����

���
(51)

−i�


 ��
��

�

���

���

− 3
2 ��
��

�
���
���







G0,Ṽ0,Ũ0

,

U =


− ���

���

���

���
+ 3 ���

������

���



G0,Ṽ0,Ũ0

. (52)

Note that in the equations above the two factors of “3” both
come from the fact that there are three different permuta-
tions of the external legs for the corresponding diagrams.
We must be careful when using these vertex corrections to
produce diagrams, since different permutations of external
legs will produce diagrams with different topologies.

We define truncated vertices as follows:

V̄ = G−3V , Ū = G−4U. (53)
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In order to rewrite the terms marked (b) we invert (51)
to obtain

Ṽ0 = −V̄ + G−3V (1) = −V̄ + V̄ (1), (54)

with

V̄ (1) = (55)

−i�


 ��
��
��

��

− 3
2 ��
��
��

��




G0,Ṽ0,Ũ0

.

Substituting (54) and (55) into the terms marked (b)
we have

(b) = − �
2

12
V̄ V = − �

2

12
V G−3V. (56)

The terms marked (c) are explicitly of order �
3 which means

we can use (51) and (52) to write(
Ṽ0

)
xyz

= −V̄xyz, (57)(
Ũ0

)
xyzw

= −Ūxyzw + V̄xyaGabV̄bzw + V̄xzaGabV̄byw

+V̄xwaGabV̄bzy,

where we have written out the indices explicitly to empha-
size the fact that one must be careful to correctly identify
the diagrams that are produced when the substitution (57)
is made. Substituting we obtain

(c) = −i�3


 1

48��
��
��
��

(58)

+
1
12


��
��

− 3
2��
��
����







G,V̄ ,Ū

.

Combining (56) and (58) with the terms marked (e) in (50)
we have

Γ [ϕ, G, V, U ]Part 2

= − �
2

3!
V S(3)

c − i
�

3

4!
US(4)

c − �
2

8
G2S(4)

c

− �
2

12


��
��


G,V̄ ,Ū

(59)

−i�3


 1

48��
��
��
��

+
1
12


��
��

− 3
2��
��
����







G,V̄ ,Ū

.

The final result for Γ (3)[ϕ, G, V, U ] is given by the sum
of (49) and (59).

3.3 Equations of motion

To interpret this result we calculate the corresponding
equations of motion by taking functional derivatives with
respect to G, V and U , and setting the sources to zero.
Note that the effective action is varied with respect to
the connected vertices V and U , and not the truncated
vertices V̄ and Ū or the proper (1PI) vertices Ṽ and Ũ .
This procedure is consistent with the use of the connected
2-point function G as a variational parameter. The relation-
ship between the connected, truncated, and proper func-
tions is straightforward for the 2- and 3-point functions.
In analogy with (53), the truncated 2-point function is
just G−1. The proper 2-point function is usually defined as
Π = −G−1 +S(2). The truncated 3-point function is given
by (53). At lowest order the proper 3-point function is ob-
tained from (51): V̄ (0) = −Ṽ (0). For the 4-point function
however, the situation is more complicated. The truncated
4-point function is given by (53), but it cannot be written
as a simple function of the proper 4-point function. When
we write the truncated 4-point function in terms of proper
functions we obtain an expression that involves proper 3-
and 4-point functions. From (52) we have at lowest or-
der: Ū (0) = −Ũ (0) + 3Ṽ (0)GṼ (0). In what follows below,
we write the effective action as a functional of connected
vertices and use these connected vertices as variational pa-
rameters. Our goal is to compare the resulting equations
of motion with the SD equations.

We note that, by construction, each diagram in a SD
equation contains at least one classical vertex. In contrast,
the equations of motion obtained from functional differen-
tiation of the 4PI effective action will contain some terms
that contain classical vertices and resummed vertices, and
other terms that contain only resummed vertices. How-
ever, we will show below that cancellations occur in those
diagrams in the equations of motion that do not contain
a classical vertex. When these cancellations are properly
accounted for, we find that the equations of motion ob-
tained from varying the 4PI effective action with respect
to the connected vertex functions are equivalent to the SD
equations, up to the loop order below which the 5-point
vertex appears.1

We use several tricks to obtain this result.
[a] We use the fact that we have the freedom to take V̄ →
V̄ (0) and Ū → Ū (0) anywhere we choose in terms that carry
an explicit factor of �

3.
[b] We use (51) and (52) to obtain(

V̄0
)
xyz

= −
(
Ṽ0

)
xyz

, (60)

1 Results that are similar have since been obtained by
Berges [13].
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(
Ū0

)
xyzw

= −
(
Ũ0

)
xyzw

+
(
Ṽ0

)
xya

Gab

(
Ṽ0

)
bzw

+
(
Ṽ0

)
xza

Gab

(
Ṽ0

)
byw

+
(
Ṽ0

)
xwa

Gab

(
Ṽ0

)
bzy

,

which allows us to transform from bare truncated vertices
to bare proper vertices.
[c] We set sources to zero and drop 1PR terms to obtain
the classical vertices:

Ṽ0

∣∣∣
J=B=K=H=0

= S(3) ; Ũ0

∣∣∣
J=B=K=H=0

= S(4). (61)

3.3.1 Functional derivative with respect to G

We take the functional derivative with respect to Gab and
explicitly write out all indices. From Γ [ϕ, G, V, U ]Part 1 (as
given in (49)) we have a contribution

i
�

2

(
S(2) − G−1

)
ab

. (62)

Next we consider contributions from Γ [ϕ, G, V, U ]Part 2 as
given in (59). From the third and fifth terms we have

− �
2

4
GxyS

(4)
axyb − i

�
3

12
S(4)

axyzGxx̄GyȳGzz̄Ūx̄ȳz̄b

+ i
�

3

4
S(3)

axyGxαGyȳS
(3)
αβγGβx̄Gγz̄Ūx̄ȳz̄b. (63)

Note that in the fifth term we have replaced one of the full
vertices by the bare vertex Ū0 and transformed the bare
vertex with bar to the vertex with tilde using (60). The
fourth term in (59) gives

�
2

4
V̄axyGxx̄GyȳV̄x̄ȳb

∣∣∣
J=B=K=H=0

. (64)

Contributions from the sixth and seventh terms can be
rearranged to produce

− �
2

4
V̄ (1)

axyGxx̄GyȳV̄x̄ȳb

∣∣∣
J=B=K=H=0

− i
�

3

4
S(3)

axyGxαGyȳS
(3)
αβγGβx̄Gγz̄Ūx̄ȳz̄b, (65)

where we have dropped contributions that correspond to
terms that would come from 2PR contributions to the effec-
tive action, since these terms have been dropped from the
beginning of the calculation. Note that the last term in (63)
cancels with the last term in (65). We can combine (64)
and the first two terms in (65) to produce

�
2

4

(
V̄ − V̄ (1)

)
axy

Gxx̄GyȳV̄x̄ȳb. (66)

We rewrite this result using(
V̄ − V̄ (1)

)
= V̄ (0) = −Ṽ0 ; Ṽ0

∣∣∣
{J,B,K,H}=0

= S(3)(67)

and obtain

�
2

4
S(3)

axyGxx̄GyȳV̄x̄ȳb. (68)

Combining (62), (63) and (68) gives

i
(
S(2) − G−1

)
ab

− �

(
1
2

S(3)
axyGxx̄GyȳV̄x̄ȳb +

1
2

GxyS
(4)
abxy

+
i�
6

S(4)
axywGxx̄GyȳGzz̄Uxywb

)
= 0. (69)

Extracting the self-energy we have

Πab =
(
S(2) − G−1

)
ab

(70)

= −i�
(

1
2

S(3)
axyGxx̄GyȳV̄x̄ȳb +

1
2

GxyS
(4)
abxy

+
i�
6

S(4)
axywGxx̄GyȳGzz̄Uxywb

)
.

Graphically this result is represented

Π = −i�


 1

2 ��
��� +

1
2��
��

+
i�
6 ��
���


 , (71)

where the lines represent full propagatorsG, the un-blobbed
vertices are the bare vertices S(3) or S(4), and the blobbed
vertices are the full vertices V̄ or Ū . We note that (71) is
nothing other than the familiar Schwinger–Dyson equation
for the self-energy for φ4 theory [12].

3.3.2 Functional derivative with respect to V

The calculation of the functional derivative of the effective
action with respect to V can be done similarly. We obtain

0 = − �
2

6
V̄xyz − �

2

6
S(3)

xyz

− i�3

12


4

x

y ��
��
��

�� ��� z (72)

− 3
x

y ��
��
��

�� �� z




J=B=K=H=0

,
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where the blobbed vertices are the full vertices V̄ or ¯U .
Using the same tricks as before, we can rearrange this

result to obtain the SD equation for the 3-point function, to
1-loop order. First we use the fact that we have the freedom
to take V̄ → V̄ (0) and Ū → Ū (0) anywhere we choose in
the terms that carry an explicit factor of �

3. Using this
freedom in a way that will prove convenient later on, we
rewrite the term in square brackets to obtain

2
x

y ��
��
��

�� � z + 2
x

z ��
��
��

�� � y

−
x

y ��
��
��

�� � z −
x

z ��
��
��

�� � y

−
y

z ��
��
��

�� � x




J=B=K=H=0

. (73)

Using (60) and (61), and dropping contributions that cor-
respond to terms that would come from 2PR contributions
to the effective action, since these terms have been dropped
from the beginning of the calculation, we obtain

V̄xyz = −S(3)
xyz − i

�

2


x

y ��
��
��

�� � z (74)

+
z

x ��
��
��

�� � y

+
y

z ��
��
��

�� � x


 .

As in (71), the lines represent full propagators G, the un-
blobbed vertices are the bare vertices S(3) or S(4), and the
blobbed vertices are the full vertices V̄ or Ū . This result is
the Schwinger–Dyson equation for the truncated 3-point
function in φ4 theory, to 1-loop order.

3.3.3 Functional derivative with respect to V

The calculation of the functional derivative of the effective
action with respect to U is straightforward. We obtain

Uxyzw = −S(4)
xyzw, (75)

which is just the Schwinger–Dyson equation for the trun-
cated 4-point function in φ4 theory, at the tree level.

4 Discussion and conclusions

In this paper we have worked with φ4 theory and explicitly
demonstrated that there is a connection between the hier-
archy of Schwinger–Dyson equations and the equations of
motion that one obtains from taking functional derivatives
with respect to the connected vertices in a 4PI effective
theory: the equations of motion obtained from a 4PI ef-
fective action reproduce with the Schwinger- Dyson equa-
tions at the loop order immediately below which 5-point
vertices appear.

This connection is particularly interesting in the con-
text of gauge invariance. Problems with gauge invariance
arise when extracting physical quantities from a truncated
nPI effective theory or a truncated hierarchy of SD equa-
tions.However, since annPI effective theory simultaneously
resums different classes of topologies, one expects that in-
creasing n will reduce gauge dependence, at each order in
the expansion scheme. Our result supports this conclusion
since it is clear that truncating the SD equations at higher
order in the hierarchy will give a higher degree of accuracy
with respect to the Ward identities. Work is currently in
progress on an inductive proof of this point.
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